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ABSTRACT
Today’s top high performance computing systems run ap-
plications with hundreds of thousands of processes, contain
hundreds of storage nodes, and must meet massive I/O re-
quirements for capacity and performance. These leadership-
class systems face daunting challenges to deploying scalable
I/O systems. In this paper we present a case study of the
I/O challenges to performance and scalability on Intrepid,
the IBM Blue Gene/P system at the Argonne Leadership
Computing Facility. Listed in the top 5 fastest supercomput-
ers of 2008, Intrepid runs computational science applications
with intensive demands on the I/O system. We show that
Intrepid’s file and storage system sustain high performance
under varying workloads as the applications scale with the
number of processes.

1. INTRODUCTION
The demands of computational science have resulted in ever
larger parallel computers, and storage systems for these com-
puters have struggled to match the rates at which appli-
cations generate data. Computational science applications
are increasingly I/O bound because of the disparity in the
rate of improvement in computational capacity compared to
storage throughput. Today’s top supercomputers maintain
a delicate balance between the aggressive I/O demands of
applications and the large cost of storage hardware. The
557 TFlops Blue Gene/P system (known as Intrepid) at the
Argonne Leadership Computing Facility (ALCF) demon-
strates storage provisioning that allows I/O performance to
scale to a large percentage of the machine. But appropri-
ate storage partitioning is not sufficient in achieving high
performance. The challenge falls to the storage software as
well, which has had to adapt to extract the highest pos-
sible performance from increasingly complex storage hard-
ware. High-level parallel I/O libraries [1, 2], I/O middle-
ware, and parallel file systems require increasing specializa-
tion to maintain high performance for the demanding I/O
workloads of computational science.

This paper is authored by an employee(s) of the U.S. Government and is in
the public domain. SC09 November 14-20, 2009, Portland, Oregon, USA
978-1-60558-744-8/09/11

In this paper we evaluate the scalability of the parallel stor-
age system on a leadership-class machine. We characterize
the I/O architecture of Intrepid and measure the effective-
ness of the I/O software to manage data for computational
science at the largest scales. In section 2, we discuss the
approaches that others have taken in assessing the capa-
bilities of storage hardware and software, and we describe
how we adopt the best practices from prior research in our
evaluation. Section 3 describes the hardware and software
architectures studied in this work. Section 4 presents our
evaluation of the entire system, starting with the capabili-
ties of the storage hardware and building up to an analysis
of application workload performance.

2. BACKGROUND
Our research is motivated by the increasing gap between
computation and I/O performance and by the challenges
of I/O software and hardware to meet the I/O demands
of computational science applications. We assess previous
work in this area, focusing on studies that perform scalabil-
ity measurements of parallel storage hardware and software
systems in high performance computing. Scaling studies fo-
cus to varying degrees on the storage system components,
the parallel file system, and the application workloads. We
categorize these studies into three broad classes of work, and
discuss the degree of scalability achieved during evaluation.

2.1 Parallel File System Evaluations
A few studies focus on a particular file system and the over-
all design choices made to achieve high performance. In
these studies, performance results are a validation of the
design, and scalability is demonstrated to the degree con-
sidered appropriate for the targeted systems and workloads.
Schmuck and Haskin [3] give an overview of the GPFS ar-
chitecture, a shared disk file system that provides access to
shared files by using distributed locking mechanisms. They
demonstrate scalability for both clients and storage servers
for tens of nodes with large contiguous access patterns and
discuss optimizations for shared file access and block alloca-
tion. Welch et al. [4] present the architecture of the Panasas
parallel file system, also a shared disk file system. Their
performance results demonstrate scalability for hundreds of
clients and tens of storage nodes with access patterns that
perform both contiguous and random I/O to individual files.

Weil et al. describe Ceph [5], a cluster file system that uses
variable-sized objects to store file data and includes a novel
technique for distributing objects over storage nodes. Their



evaluation includes a scalability study of up to 32 storage
nodes, keeping the process count constant at 400. A popular
file system within HPC, the Sun Lustre file system also uses
objects to store file data, and a number of scalability stud-
ies of systems that use Lustre have been performed [6][7],
showing performance with as many as 8,192 clients and 144
storage nodes [7]. Oldfield et al. [8] approach scalability

Oberg et al. [9] compare GPFS, Lustre, and PVFS and
document the variability in out-of-the-box performance for
those file systems. They perform runs with tens to hundreds
of client processes, focusing on some of the administrative
challenges with the current state of the art in parallel stor-
age software and some of the intensive tuning required by
administrators to achieve reasonable performance.

2.2 HPC System Scaling Studies
The second category of scalability studies characterize, the
I/O behavior of a specific production system with leading-
edge requirements (at the time of study) for I/O capabil-
ity, performance, and scalability. These works focus on the
I/O patterns of applications that are targeted for their sys-
tems, and so perform large scale runs with benchmarks that
mimic their application’s access patterns, using the paral-
lel file system deployed at that site. The primary focus of
these studies is scalability, as many of the systems are the
largest in the world, with unprecedented node counts and in-
dependent storage components. Moreover, they often have
significant capability requirements, where a large fraction of
the machine’s I/O resources may be used for a single job
[10]. Most of these studies perform tests at scales with pro-
cessor counts in the thousands. These studies show that
even at these scales, significant challenges arise. Laros et
al. [10] measure the I/O performance of Red Storm, a Cray
XT system with 25,920 cores, running the Lustre file sys-
tem. Their methodology first measures each component of
the I/O path and then, using the client to storage node ratio,
measures scalability of the system up to that ratio. Their
results demonstrate performance degradation at larger runs
where the storage devices were oversubscribed (more than
one client per storage device).

Two recent studies measure the scalability of the Jaguar sys-
tem at Oak Ridge National Laboratory, a Cray XT3/XT4
machine with more than 32,000 cores in 2008. Yu et al. [11]
measure the scalability of each level in the storage heirarchy
and perform scalability runs at 8,192 processes. Fahey et al.
[12] perform scalability measurements of the same system
but focus on the performance of runs with a constant file
size. Both studies identify a number of key tuning param-
eters required to get significant performance improvement
but also demonstrate significant challenges to scaling I/O at
thousands of processes. For example, in both studies of the
Jaguar system, the time to open a file begins to dominate
at larger node counts. Both studies also demonstrate signif-
icant performance improvement during shared-file tests by
determining the optimal number of I/O aggregators to per-
form I/O (referred to as subsetting in [12]), decreasing the
effective scale that the file system must support.

2.3 Application I/O Studies
The last category of studies focuses primarily on application
I/O workloads and the degree to which I/O intensive appli-

cations are able to maintain efficient I/O performance with
increasing node counts and problem sizes. Kandaswamy et
al. [13] perform an early study of a variety of applications
and measure how performance improves for various opti-
mizations on each application. This study includes runs
with as many as 512 processes. More recently, Borrill et
al. [14] demonstrate performance variations of a single appli-
cation benchmark MADbench2 on a number different sys-
tems and characterize some of the architectural and soft-
ware challenges that are impediments to scalability. Shan
et al. [15] attempt to parameterize the I/O workloads of a
selected set of HPC applications in order to predict the per-
formance of applications on different systems and to unify
the set of tests needed for system testing and procurement.
They focus on the use of the IOR synthetic benchmark to
mimic application I/O behavior. This study performs runs
ranging from 8 to 512 client processors. While each of these
studies covers a wide variety of applications and their differ-
ing I/O workloads, testing is limited to hundreds of clients
per run.

One of the few studies of an application running at a much
larger scale was done by Fisher et al. [16] on the Blue
Gene/L system at Lawrence Livermore National Laboratory,
performing FLASH3 runs on 64,000 processors. While this
was not an I/O study, they document some of the major
challenges of I/O at this scale.

In our analysis we adopt the best characteristics of all three
classes of studies. Like parallel file system studies, we high-
light how specific features of the file system and I/O soft-
ware help to attain high performance. Like HPC scaling
studies, we perform a thorough analysis of the underlying
hardware and test PVFS with synthetic benchmarks run-
ning on over 100,000 processes. Moreover, we use a set of
application-oriented benchmarks to provide insight into how
the file system will perform for computational science appli-
cations. Overall we present a unique and detailed picture of
a computational science I/O system at extreme scale.



Figure 1: Architectural diagram of Intrepid.

3. SYSTEM ENVIRONMENT
Leadership-computing systems are on the cutting edge of
computing hardware and system software, and technolo-
gies that first appear in these systems often “trickle down”
into future systems. Many of the I/O hardware and soft-
ware components have unique characteristics and features
needed by leadership-computing systems that perform com-
putational science. In this section we describe the archi-
tecture of Intrepid on which this evaluation is performed,
present the I/O software deployed on this system, and focus
on some of the important features needed by computational
science applications running on Intrepid.

3.1 Intrepid I/O Architecture
The IBM Blue Gene/P (BG/P) system is the second in a se-
ries of supercomputers designed by IBM to provide extreme-
scale performance along with high reliability and best-in-
class power consumption. Figure 1 shows the architecture of
Intrepid, the Argonne Leadership Computing Facility BG/P
system, including the storage hardware attached externally
to the machine. Each rack of BG/P has 1,024 quad-core
nodes with a total of 2 terabytes of memory and a peak per-
formance of 13.9 teraflops. Intrepid has 40 such racks; in
aggregate, the system has 80 terabytes of memory, a peak
performance of 557.06 TFlops, and 163,840 compute cores.

The BG/P compute node I/O and interprocess communica-
tion travel on separate internal networks. A three-dimensional
torus network is used for communicating among compute
nodes (abbreviated CNs), while a tree network allows CNs
to perform I/O to designated I/O forwarding nodes. In the
BG/P system, these I/O forwarding nodes are referred to
simply as I/O nodes (abbreviated ION s), and are distinct
from the storage server nodes. For each group of 64 CNs
(called a pset), there is a single ION that receives I/O re-
quests from the CNs in that group and forwards those re-
quests over its 10 gigabit ethernet port to the external stor-
age system. In total, 640 IONs are connected through 10

Gigabit Ethernet ports to the storage system, which con-
sists of a diameter-5 Myricom Myri-10G switch complex. At
the other end of the switch complex are 128 storage servers.
These servers are attached via InfiniBand 4X DDR to 16
Data Direct Network 9900 storage devices (or just DDN
9900 ). The DDN 9900 performs RAID 6 parity calcula-
tions, data integrity validation, and online drive rebuilds,
as well as providing redundant paths to its storage. The
DDN 9900 exports block devices as logical units (LUN s).
Each DDN 9900 contains two controllers with four Infini-
Band ports each that receive SCSI requests to the LUNs
over InfiniBand. The Intrepid system is configured so that
each LUN is exported across all the ports on each controller,
providing eight servers with redundant device access. This
allows up to seven of the nodes connected to a single DDN
9900 to fail, while still providing availability to the LUNs
exported by the DDN 9900. Also, if one of the controllers
on the DDN 9900 fails, data for the LUNs is still available
through the other controller. This combination of one DDN
9900 with two controllers, eight ports, and eight storage
nodes makes up a redundancy group that tolerates failures
and allows for the software environment to provide high-
availability guarantees to the storage. The entire storage
system consists of 16 of these redundancy groups, with 128
storage nodes in total.

3.2 I/O Software
Multiple software layers are involved in the I/O path. Ap-
plications use I/O libraries, such as HDF5, or PnetCDF, or
may call MPI-IO or POSIX system calls directly. If MPI-
IO is used (either by the application or a higher-level li-
brary), MPI-IO optimizations such as two-phase I/O are
accomplished via communication over the 3D torus network
between compute nodes.

The BG/P system allows applications to run in virtual node
mode, where a separate process runs on each of the four cores
of a CN. In the Intrepid configuration, with 64 CNs per ION,



each ION may perform up to 256 independent I/O requests
to the file system at once. From the file system perspective,
this results in as many as 163,840 independent processes per-
forming I/O requests concurrently from 640 distinct client
nodes. All requests to the file system from CN processes
are converted into one or more POSIX-like operations, for-
warded over the internal tree network, and received by an
I/O forwarding daemon, called the ciod, running on an ION.
IONs run the Linux operating system and mount external
file systems. The ciod forks a separate process to repre-
sent each CN process in its pset (up to 256 total). These
processes replay system calls made by their corresponding
CN process. These calls make their way through the Linux
kernel virtual file system layer and are subsequently pro-
cessed by the specific file system, in our case PVFS. PVFS
is an open source parallel file system designed for computa-
tional science applications [17, 18, 19, 20]. The PVFS client
software running on the ION receives system calls from the
kernel and translates these operations into requests to be
sent over the Myricom network to the PVFS metadata and
I/O servers running on the storage nodes. PVFS servers
in turn receive requests and perform operations to the In-
finiBand connected storage devices. In addition to a Linux
kernel module that provides a POSIX-like interface, PVFS
provides a rich interface for describing I/O accesses. Sup-
port for this interface is provided in the ROMIO MPI-IO
implementation [21]; when used, this interface significantly
improves performance for certain classes of HPC applica-
tions [22, 23]. Because of the BG/P dependence on the IBM
I/O forwarding implementation, all PVFS accesses must be
vectored through the Linux kernel on IONs, preventing the
use of the richer PVFS interface in this deployment. How-
ever, a number of other features in the I/O software enable
scalable and resilient operation in this demanding environ-
ment.

3.2.1 Collective I/O
On Intrepid, the MPI-IO layer can perform collective I/O,
giving a subset of the processes the responsibility of per-
forming I/O on behalf of all the processes. This allows for
aggregation, transforming many small I/O accesses (a com-
mon workload for many applications) into several larger I/O
accesses (a more optimal workload for I/O systems). I/O
operations that would otherwise appear out of order to the
storage device can be aggregated and performed as a sin-
gle operation or as fewer in-order operations. Aggregation
also allows I/O to be aligned to the blocksize of the filesys-
tem, which has shown significant performance improvement
in parallel file systems [2]. On Blue Gene systems such as In-
trepid, the dedicated I/O forwarding nodes effectively limit
the number of processes that achieve peak performance from
the I/O system [24]. Hence, collective I/O is a good choice
for these systems.

Leadership-computing systems today often have low-latency
communication networks that are separate from the high-
bandwidth (but often higher-latency) I/O network. Col-
lective I/O is able to take advantage of this imbalance in
latency between the compute nodes and the storage devices,
performing smaller, latency bound I/O operations over the
communication network to the designated I/O nodes, which
only perform larger, bandwidth intensive I/O operations to
storage. Further, if separate communication and I/O net-

works do exist on the system, collective I/O is able to aug-
ment the performance of the storage hardware by exploiting
the fast communication networks on these machines.

3.2.2 Consistency
The PVFS file system deployed on Intrepid relaxes the POSIX
consistency semantics [25], which require synchronization
between processes performing I/O operations to the same
file. Computational science applications often exhibit co-
ordinated, fine-grained sharing of datasets [26], eliminating
the need for POSIX consistency.

File systems that enforce POSIX consistency semantics of-
ten use mechanisms that hinder the performance of writes
to distinct regions of a file, unless those writes are carefully
aligned with internal file system boundaries [2]. As a result,
HPC systems exhibit poor performance at higher process
counts [12] and confusing I/O system behavior, forcing com-
putational scientists to split I/O from individual processes
into separate files [16]. Instead of enforcing POSIX consis-
tency, PVFS defines simultaneous accesses to overlapping
byte regions of a file to have undefined results.1

3.2.3 State avoidance
Many parallel file systems cache data at the client on behalf
of the application. Keeping this state on the client allows the
file system to perform larger accesses to the storage servers,
as well as improving locality. Caching is appropriate for
systems with applications that have serial workloads writing
to separate files, but it has reduced benefit and often hinders
performance on systems with huge client nodes counts or on
systems with little memory available for caching. On the
IBM Blue Gene/P, only the ION can perform caching on
behalf of the CNs in its pset. With a CN to ION ratio of 64
to 1, only a small portion of memory is available for caching.
Cache thrashing is likely and can hinder I/O performance.

On systems without I/O forwarding, where I/O is performed
directly by the client nodes, caching at the client requires
locking I/O accesses. For systems with tens of thousands
of active clients, the overhead of locking becomes a perfor-
mance bottleneck, particularly in concurrent I/O scenarios,
such as when a large application run attempts to checkpoint
[2].

Statelessness is important for the file system protocol as well.
Clients using a stateless protocol are not required to sup-
port callback notifications to revoke held locks or do not
require that servers monitor client status. This feature is
important on systems where lightweight client kernels run-
ning on system nodes do not support multiple threads or
where the cost of threads devoted to receiving notifications
is prohibitive. As systems have gotten larger, the increas-
ing number of independent components has dramatically in-
creased the likelihood of failure of a single component; and
with stateful clients, failures of a single client for a large
run can bring all I/O to a halt. Keeping state within the

91The I/O forwarding software provided by IBM also relaxes the
POSIX write semantics, by splitting up I/O operations. Enforc-
ing them at the file system layer on a Blue Gene/P system results
in lower performance for concurrent accesses without significantly
stronger semantic guarantees than those provided by PVFS.



client requires separate lock manager nodes to manage the
shared state at the clients. These lock managers introduce
additional management overhead and points of failure to the
overall system. By contrast, PVFS implements a stateless
design, where clients (BG/P IONs) push data to servers im-
mediately, instead of attempting to cache data on behalf of
clients. Open calls translate to a single lookup at one of
the metadata servers, and close calls are a local operation
that don’t perform any server requests. This design allows
I/O operations to perform I/O requests directly to the I/O
servers, bypassing metadata servers or lock managers and
eliminating unnecessary round trips that increase latency.

3.2.4 Distributed metadata
PVFS incorporates a collection of optimizations [17] de-
signed to enable high performance for non traditional appli-
cation access patterns, such as metadata-heavy workloads.
This is motivated by emerging HPC application domains
that perform in parallel many small-file operations and have
increasingly intensive metadata workloads [27]. PVFS fea-
tures that support these workloads include the ability to dis-
tribute metadata across all servers, concise metadata repre-
sentations for small files, and optimizations to lower latency
for small file accesses.

4. PERFORMANCE EVALUATION
Our evalation of the scalability of the I/O architecture on In-
trepid includes systematic testing of each level of the storage
system. First we perform tests of individual components in
the storage system. Then we perform synthetic benchmarks
of the entire I/O subsystem, scaling from 2,048 to 131,072
processors. For large-scale application runs, we choose from
a collection of benchmarks that measure the behavior of the
storage system under various workloads, performing large-
scale runs of those benchmarks and analyzing the perfor-
mance results.

4.1 Experimental Setup
The experiments were performed during an acceptance pe-
riod before the machine and file system were in a production
mode. Our experiments used PVFS 2.8.0 (it did not include
some minor fixes that were added prior the release). PVFS
distributes both file data and metadata across multiple stor-
age servers, based on the chosen configuration. For our ex-
periments we configured a PVFS volume that consisted of
123 servers capable of handling both metadata and I/O re-
quests. Groups of 8 servers were accessing storage devices
on each of the 16 DDN 9900s (to allow for a few failures dur-
ing testing, we withheld one DDN 9900 controller and one
storage node from the pool of storage). The PVFS servers
were configured to access storage devices using direct I/O
to bypass the Linux kernel buffer cache.2 This configuration
was chosen because it demonstrated significant performance
improvement for large accesses to the DDN 9900. Un-
less otherwise noted, the bandwidth measurements through-
out our experiments are given in the IOC standard units of
mebibytes (220) or gibibytes (230), abbreviated MiB and
GiB, respectively. The servers were configured with a stripe
unit of 4 MiB, chosen to match the maximum buffer size
used by the ciod for each file system operation.

92This was enabled in the PVFS config file with TroveMethod
directio.

The results were gathered after aggressively tuning each
component of the I/O stack and were taken during an ac-
ceptance period where the system was unavailable to users
and provided consistent performance. While our goal was
to measure the overall performance of the system for appli-
cations running during production, large variations in per-
formance from week to week and even day to day were seen,
most often due to storage component failures and firmware
upgrades. Our experience suggests that reproducing results
is extremely challenging on systems of this complexity.

4.2 Component Analysis
To establish the I/O rates the machine is capable of sus-
taining through the IBM ciod I/O forwarding framework,
we performed a set of tests moving data between CNs and
IONs only. Figure 2(a) shows the available bandwidth be-
tween CNs and IONs on BG/P using either 1 or 64 compute
processes and a 4 MiB block size. We chose the 4 MiB block
size to reflect the maximum request size that can be pro-
duced by the I/O forwarding software. The bandwidth is
measured by performing reads and writes to the /dev/zero
special file in order to eliminate parallel file system costs.
Reads require multiple processes to saturate the link be-
cause of the overhead of providing zeroed out buffers on the
ION side. For writes, a single process is enough to saturate
the link.

Figure 2(b) shows the bandwidth between IONs and storage
nodes as measured with NetPipe. The IONs are able to drive
the external 10 Gigabit Ethernet network at only approxi-
mately 276 MiB/s. This ION limit defines the maximum
rate at which a set of CNs associated with an ION will be
able to access storage. Also, the ION performance showed
irregularity at a number of intervals between message sizes
of 16,384 to 262,144 bytes. In order to show complete per-
formance, NetPipe perturbs the message sizes sent so that
not all messages are multiples of 2. We see that for a few
of these unaligned small messages, performance is severely
reduced. This may have a dramatic effect on applications
that perform smaller I/O with unaligned message sizes.

Figure 3 shows the peak I/O rates attained when access-
ing the DDN attached storage using one to seven storage
servers with different numbers of threads. To mimic large
I/O patterns, we performed large contiguous direct accesses
of 4 MiB to the device using sgp dd. We did not see an im-
provement in performance with all 8 servers accessing the
device, and so we deployed the production file system with
only seven servers per storage device. These results were
taken after the storage devices had been configured for the
production configuration.

For the Intrepid configuration, PVFS stores metadata on the
DDN 9900 storage device. Because of this setup, we wanted
to measure the cost of metadata updates, which occur locally
for many write operations (writes past end-of-file require an
update to the size). The metadata updates consist of small
(4,096 to 262,144) writes, followed by a sync operation. The
performance of the device for these small write+sync opera-
tions is in the range of 5-8 MiB/s, far less than for the larger
I/O accesses. This results in an added cost to write oper-
ations, reducing peak write bandwidth for a single storage
node from 600 MiB/s to roughly 550 MiB/s. Performance
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of applications that have metadata-intensive workloads are
limited by this rate as well.

To determine the aggregate peak rate of the external ether-
net, we configured the PVFS servers to not perform I/O to
the storage devices,3 and we measured the performance of
large collective reads and writes at 131,072 processes. For
these tests, the aggregate write bandwidth of the network
maintained a peak rate of 45.19 GiB/s and a peak read band-
width of 59.87 GiB/s. We were unable to pinpoint the cause
of the discrepancy between reads and writes, but we spec-
ulate that with 512 nodes on the client side of the network
and 123 nodes on the server side a variation of the incast
problem [28] limits the aggregate write bandwidth.

Combined, these results determine the overall peak I/O rate
of the system for varying numbers of processes. They show
that the I/O system has a reasonably balanced provision-
ing, where storage component peak rates are reached only
when applications perform runs utilizing almost half of the
machine.

93This was enabled in the PVFS configuration file with Tro-
veMethod null-aio.

Using these component peak rates, we can calculate the ag-
gregate peak rate of the system as shown in Figure 4. From
the storage side, we should not expect to exceed 65.9 GiB/s
aggregate read or 68.3 GiB/s aggregate write performance.
The external network further limits aggregate write band-
width to 45.19 GiB/s. From the ION side, the per-ION rate
limits the maximum bandwidth for reading until 244 IONs
are in use (62,464 client processes in virtual node mode). For
writing, the maximum bandwidth is limited by the per-ION
rate until 285 IONs are in use (45,116 client processes).

4.3 Scaling Analysis
4.3.1 IOR
We employ the IOR benchmark from LLNL to measure ag-
gregate I/O throughput. IOR is a flexible, synthetic I/O
benchmark that allows I/O through a variety of interfaces
and coordinates timing and access using MPI communica-
tion. The coordination of timing is critical when measuring
performance with very large numbers of clients.

Figures 5(a) and 5(b) show the IOR throughput for reads
and writes, respectively, using the POSIX interface. The
aligned tests used 4 MiB accesses for a total of 64 MiB per
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Figure 5: IOR aggregate read (left) and write (right) performance with 64 MiB per process.

process. With aligned accesses, each process performs ac-
cesses that align perfectly with the stripe of the file, so the
large 4 MiB accesses are made directly to the storage device.
The unaligned tests used 4 MB (4×106 bytes) accesses for a
total of 64 MB per process. With unaligned accesses, the re-
quests span multiple file stripe units, requiring that requests
be serviced by two storage nodes rather than one.

The results show that performance was best with shared file,
aligned accesses. For writes, performance begins to level off
at 64K processes and remain constant. At a maximum rate
of 40.2 GiB/s for writing, we were able to achieve roughly
85% of the peak rate for this hardware configuration. Read
performance continues to increase with the process count,
reaching a maximum rate of 47.9 GiB/s at 131,072 pro-
cesses, roughly 79% of the peak hardware rate. These results
show that performance is maintained at the highest proces-
sor counts and that the storage system is able to scale with
the size of the application. The results also demonstrate
inefficiency in the storage hardware and software and pro-
vide insight into some of the challenges of achieving peak
performance in leadership storage systems.

At large process counts there is a deviation from the peak
hardware rate. As larger application sizes place heavier
workloads on the storage nodes, we notice deficiences in both
the storage device and file system software at the storage
node. Two notable file system deficiencies stand out. First,
at higher process counts we see roughly a 20-25% decrease
in performance with unique files compared to shared files.
This can be attributed to the PVFS data placement algo-
rithm, which uniformly distributes a file over all the storage
nodes but chooses randomly the first node to begin strip-
ing. When shared file accesses are performed to a single file,
I/O is balanced evenly over the storage nodes. However,
with file-per-process workloads, we see hot spots develop at
the storage nodes, decreasing the overall performance of the
application.

Second, the file system does not aggregate I/O requests to
the storage device. For unaligned and unique file workloads,
the storage device sees many concurrent smaller requests, of-
ten out of order. Few storage devices perform well under this
workload; and although the DDN 9900 device aggregates
requests together, a decrease in performance is seen with
smaller concurrent I/O requests. This behavior is most no-
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ticeable in the comparison of aligned and unaligned accesses.
With aligned accesses, a single 4 MiB request is performed
from an ION to a storage node; but with unaligned accesses,
an I/O request is split into two uneven requests to different
storage nodes. The resulting throughput is limited by the
smaller I/O request to the storage device. The DDN 9900
device provides a write-caching mode, which was enabled
for these tests. This allows the device to perform more ag-
gregation for heavy write workloads than for reading, which
hides some of the unaligned performance drop in the case of
writing. Moreover, when writing unique files, each I/O re-
quest at the storage node requires a metadata update to the
size of the data object. These updates require 4 KiB write
requests to the storage device. This requirement limits the
throughput when writing unique files to the storage device
performance for 4 KiB accesses. PVFS coalesces these small
updates, but the coalesced accesses remain relatively small,
and the difference is marginal at higher process counts.

4.3.2 Metarates
While file system create and file stat rates are not often a
critical factor in computational science applications, they
can be important in other domains [27]. Here we demon-
strate scalability of the file system that goes beyond the re-
quirements of the HPCS PERCS program, including creat-
ing 32,000 files per second and performing 10,000 metadata
operations per second.

The metarates benchmark from University Corporation for
Atmospheric Research (UCAR) performs metadata opera-
tions using POSIX system calls (creat and stat), using
MPI barrier operations to synchronize between processes.
Figure 6 shows the total rate to both create and close new
files as well as the rate to stat existing files. The number of
clients is scaled as in the IOR case. The number of servers is
fixed at 123. Each process accesses 2 files, for a total of up to
262,144 files accessed at the largest data point. Each client
operated in its own subdirectory to prevent synchronization
at the metadata server managing a single directory.

These results demonstrate create and stat rates scaling with
the number of processes, performing 34,470 create opera-
tions per second at 98,304 processes. The stat rate does not
scale up at the same rate but still shows a stat rate of 16,642
operations per second at 131,072 processes. We attribute
the differences in create and stat rates to the performance
of the storage device for small I/O accesses. Creating a file

Table 1: BTIO problem size E, 65,536 processes
Performance Measurement
I/O timing 91.73 seconds
Percent I/O 30.35%
Total data written 1976.65 GiB
I/O data rate 21.55 GiB/s

requires writing a 4 KiB page to the storage device, while
stat requires reading a 4 KiB page from the storage device.
In this case, we see that the storage device performs better
with small write requests than with reads.

4.4 Application Benchmarks
The results presented so far give us an indication of the
peak performance possible using the combination of hard-
ware and file system software deployed. However, the suc-
cess of this I/O system is defined by its ability to provide
performance for applications, not for synthetic benchmarks.
In this section we investigate how the system performs using
three benchmarks that simulate I/O from applications that
exhibit weak scaling in three different scientific domains. To
capture the performance of a typical application running on
the system, we chose not to tune the benchmarks to improve
their performance. Instead, we inspect the I/O patterns of
each benchmark run with their default settings and discuss
some of the causes for seeing reduced performance from our
IOR scaling study measurements. To understand the I/O
patterns of the application benchmarks, we used Darshan
[29], a tool developed at Argonne to inspect application I/O
workloads as the application runs.

4.4.1 BTIO
BTIO is an I/O-only version of the BT (block tridiagonal)
benchmark found in the NAS Parallel Benchmarks (NPB)
collection [30]. The BT benchmark performs a complex do-
main decomposition across a square number of nodes, where
each compute node is responsible for multiple Cartesian sub-
sets of an entire dataset. The BTIO benchmark performs
large collective MPI-IO writes and reads of a nested strided
datatype and is an important test of the performance a sys-
tem can provide for noncontiguous workloads. The BTIO
benchmark was built from NPB version 3.3 with the “full”
subtype, which includes a Class E problem size. Class E cor-
responds to a grid size of 1020× 1020× 1020, which writes
in aggregate 1.93 TiB of data to a shared file every fifth
timestep using 65,536 processes. Table 1 shows the results
of running BTIO on Intrepid.

BTIO reports overall throughput, so the aggregate through-
put of 21.55 GiB/s is a measure of both the write and read
phases of the benchmark. This matches closely with what
we see for read performance at 65,536 processes in our IOR
measurements. The BTIO benchmark uses MPI-IO collec-
tive writes and reads to a shared file and, in “full” mode,
enables the MPI-IO collective buffering optimization, which
designates a subset of compute nodes that perform I/O to
the file system. For this run, the BTIO default collective
buffer size of 1 MB (1×106) was used. The number of collec-
tive buffering nodes on Intrepid is set to 8 per ION, resulting
in a total of 2,048 CNs performing I/O through 256 IONs at



1 MB contiguous requests. With a 1 MB collective buffer,
95% of the I/O performed by BTIO was unaligned. This
result shows the importance of tuning the application and
I/O interfaces to the unique characteristics of the storage
system. Based on results from our IOR scaling measure-
ments, we expect a substantial improvement if buffers are
aligned by the BTIO application.

4.4.2 MADbench2
MADbench2 is a benchmark derived from the MADspec
data analysis code. The MADspec code estimates the an-
gular power spectrum of cosmic microwave background ra-
diation in the sky from noisy pixelized datasets. As part
of its calculations, the MADspec code (and likewise the
MADbench2 benchmark) performs extremely large out-of-
core matrix operations, requiring successive writes and reads
of large contiguous data from either shared or individual
files. Because of the large, contiguous mixed read and write
patterns that MADbench2 performs and its capabilities to
test a variety of parameters (shared files, POSIX vs. MPI-
IO, etc.), it has become a leading benchmark in the parallel
I/O community [14, 31].

In our tests, we examine the scalability of the file system
with many processes reading and writing to a shared file,
an I/O pattern that becomes increasingly difficult at scale
for many file systems but is necessary in data analysis ap-
plications where the number of processors may change from
one run to the next [14]. We ran MADbench2 with 65,536
processes (MADbench2 requires a perfect square number of
processes). MADbench2 was compiled to run in I/O mode,
so our tests did not include MPI communication or perform
significant computation (the busy-work exponent α was set
to 1). Thus, these results demonstrate just the capability
of the file system and underlying storage architecture. The
file alignment used by MADbench2 for these runs was the
default of 4,096. We allowed all processes to perform I/O si-
multaneously (RMOD and WMOD both set to 1) and fixed
the problem size at NPIX = 400,384 so that each process
was performing I/O operations of roughly 20 MiB. In aggre-
gate, the I/O performed by each component of the bench-
mark totaled 5.13 TiB.

The results of the MADbench2 run are shown in Figure 7.
Because of the large contiguous I/O performed by MAD-
bench2, we were able to achieve roughly 45 GiB/s writing
and 27 GiB/s reading. This performance difference between
writing and reading is directly related to the mixed nature
of the MADbench2 I/O workload. Before and after each I/O
operation, MADbench2 performs a barrier, synchronizing all
processes to wait for completion of the slowest I/O opera-
tion, and forcing read and write operations into nonoverlap-
ping steps. At the storage device, a large writeback cache al-
lows the write operations to become effectively network lim-
ited, resulting in very fast responses to all write operations.
Because the MADBench2 code performs a mixed workload,
the read step that follows a write step provides a window of
time for the storage devices to flush their writeback cache
to disk. This results in higher write performance overall
than what is seen in the IOR scaling measurements, which
perform many consecutive writes, preventing the writeback
cache from improving performance.

Read performance does not get the same benefit of the write-
back cache at the storage device, and we see performance is
in line with the IOR scaling measurements. Because the
MADbench2 run used the default filesystem block size of
4,096, many of the read operations were unaligned. As a
result, we see that MADbench2 performance for reads falls
between the purely aligned and entirely unaligned IOR per-
formance.

4.4.3 Flash3 I/O
The FLASH code was developed to simulate compressible
reactive flows that occur in astrophysical environments. It
has been shown to be highly scalable; and has an I/O-only
mode for measuring the I/O performance of FLASH on a
deployed system. A case study of FLASH3 on Lawrence
Livermore’s BG/L machine performed runs at up to 64K
processes [16]. Because of the performance degredation of
shared-file I/O, the authors were forced to write a file per
process and were then met with the challenge of manag-
ing and postprocessing the nearly 75 million files generated.
Their study demonstrates the scalability problems that of-
ten arise in parallel file systems from shared file access.

The FLASH3 package provides an I/O kernel with unit tests
that mimic the I/O workloads of the full FLASH3 simula-
tion. In our experiments, we performed FLASH3 I/O kernel
runs using both the PnetCDF and HDF I/O interfaces (both
write to shared files), at a scale of 65,536 processors using
16,384 nodes in virtual node mode. Each run consisted of
writing a single checkpoint file and plot file. We used a uni-
form grid with 150× 150× 150 grid points with 6 variables.
This resulted in a checkpoint file of roughly 14TiB and a
2TiB plot file.

The results of our FLASH3 runs are shown in Figure 7. The
FLASH3 I/O workload (for both the checkpoint and plot
files) consists of writing to a shared file with large unaligned
accesses. Performance of the checkpoint files for both HDF5
and PnetCDF was just above 20 GiB/s. This is less than our
IOR scaling measurement for the same number of processes
in the aligned, shared file case. We investigated the I/O pat-
terns of the FLASH3 code for both HDF and PnetCDF while
writing the checkpoint files and found that with PnetCDF all
I/O used MPI-IO collective I/O routines, while with HDF5
only independent I/O was used. Because HDF5 performs
independent I/O at each process, most of the writes are un-
aligned, and we see many small writes (less than 100 bytes)
from HDF5 writing the checkpoint file, resulting in consid-
erably reduced performance. With PnetCDF, the collec-
tive calls require processes to first send regions to I/O ag-
gregators, which then perform the write in large, contigu-
ous chunks, synchronizing all processes until the write com-
pletes. Thus, in the PnetCDF checkpoint result, we see the
overhead of buffering at the aggregators and synchronizing
all processes for each write, which is roughly the same as the
overhead of performing many small, unaligned writes inde-
pendently at each process (with HDF5). We noticed a sig-
nificant performance drop for writing the HDF5 plotfile and,
upon investigating the I/O workload, found that the HDF5
interface in the FLASH3 I/O code unit does not enable col-
lective I/O.4 Also, HDF5 performs many very small writes

94HDF5 collective I/O is included in FLASH3 I/O code only when
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Figure 7: Application I/O benchmarks: MADbench2 (left) and FLASH3 (right).

(less than 100 bytes each), most likely to update metadata.
Taken together, these two findings explain the poor HDF5
plotfile performance.

These results show that performance of an application’s I/O
workload depends highly on the I/O interfaces in use and
on the modes specified to those interfaces. We would ex-
pect HDF5 plotfile performance to improve if the collective
I/O mode were enabled for that interface, but further inves-
tigation of the workload differences between these two I/O
interfaces is necessary.

5. CONCLUSIONS AND FUTURE WORK
In this study, we described a complete I/O system including
the hardware and software, deployed at a leadership-facility,
and we discussed how the components work together to pro-
vide I/O services to applications. We performed a compre-
hensive study of I/O performance, starting with individual
components and building up to system-wide application I/O
simulations. Our component analysis allowed us to assess
the balance of the hardware resources in the system, while
the comprehensive and application-oriented analysis enabled
us to understand how effectively the components are utilized
in real-world applications.

We found that the I/O system on Intrepid holds up well to
the I/O demands of large-scale applications but that reach-
ing peak performance of the I/O hardware is increasingly
challenging at the highest process counts. With increasing
relative cost to the I/O subsystem for petascale machines,
I/O is quickly becoming the bottleneck for many compu-
tational science applications. It is essential,therefore, that
the I/O subsystem perform near-peak rate for the largest of
runs.

We also found that application I/O performance varies con-
siderably, not only because of application’s I/O patterns,
but also because of the different I/O libraries and tuning
parameters used for a particular run.

Some of the challenges facing leadership-computing systems

compiled with the COLLECTIVE_HDF5 macro defined.

today are the same challenges of the past. Our results
demonstrate that systems continue to struggle with the dif-
ference between the large, contiguous, aligned I/O patterns
that get the best performance from the I/O system and the
smaller, noncontiguous, unaligned I/O patterns of computa-
tional science. Meeting these challenges will require a com-
bined effort from storage system designers, file system devel-
opers, and application writers. Storage systems of tomorrow
need to handle wide variations in the I/O patterns and uti-
lization of the storage system. File systems and I/O libraries
must be developed to perform well under many different I/O
workloads. Application writers must become aware of these
I/O challenges and take advantage of the optimizations and
tuning parameters provided by I/O software.

Leadership systems face new challenges as well. Unprece-
dented process counts and storage components increase the
complexity of the storage system and the likelihood of com-
ponent failures. Moreover, applications running near-full ca-
pacity on these systems quickly uncover scalability problems
in file system design. Storage systems will need to handle
component faults seemlessly, but file systems must also be
designed to avoid single points of contention, for both meta-
data and I/O accesses.

While previous HPC system studies performed scalability
measurements with less than 50% of the machine, we have
seen that on a leadership-system with balanced provisioning,
performance measurements are often necessary at higher
process counts to discover the interplay between the net-
work and storage capacity. On Intrepid, I/O bandwidth is
effectively partitioned by IONs; only the largest jobs have
the potential to monopolize the I/O system, whereas users
running at smaller process counts can expect I/O perfor-
mance to scale roughly with the size of the job.

We will continue to study the behavior of the I/O system
on Intrepid. Future work will focus on characterizing sys-
tem performance over an extended period of time. As the
production system is used by computational science, changes
to underlying software and hardware will cause performance
changes, which we intend to characterize. Emphasis will be
placed on performance and resilience in the case of failure,



to understand both the effects on performance during fail-
ure recovery, and the way performance degrades in different
failed states.
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